tech:

taffy

Parameter efficient tuning methods (PETM)

Parameter efficient tuning methods (PETM) are techniques used in artificial intelligence (AI) and machine learning (ML) to optimize model performance, while minimizing the computational resources and time required for tuning. PETM aims to strike a balance between achieving high-quality results and efficiently utilizing resources.

Tuning models often involves exploring a vast space of hyperparameters to find the optimal configuration. However, this process can be computationally expensive, especially for complex models and large datasets. PETM techniques address this challenge by providing efficient strategies for tuning models effectively.

PETM encompasses a range of approaches, including:

  1. Bayesian optimization: This method utilizes Bayesian inference to model the performance of the model based on observed hyperparameter configurations. By leveraging this probabilistic model, Bayesian Optimization efficiently selects promising hyperparameter settings to explore, reducing the number of evaluations required.
  2. Genetic algorithms: Inspired by natural evolution, Genetic Algorithms employ a population-based search strategy to iteratively optimize models. By selecting the most promising hyperparameter combinations, combining them, and applying genetic operators like mutation and crossover, this method efficiently explores the hyperparameter space.
  3. Model-based optimization: This approach builds a surrogate model, such as a Gaussian Process, to approximate the performance of the model for different hyperparameter configurations. By iteratively updating the surrogate model based on observed evaluations, Model-Based Optimization efficiently guides the search towards promising regions of the hyperparameter space.
  4. Transfer learning: Transfer Learning leverages knowledge gained from tuning similar models or datasets to accelerate the tuning process for a new model. By transferring insights and learned hyperparameters, this method reduces the search space, allowing for more efficient tuning.

The effectiveness of PETM depends on factors such as the problem domain, dataset size, and the complexity of the model. Choosing the most suitable PETM approach requires careful consideration of these factors and understanding the trade-offs between efficiency and performance.


 

Just in

Oso Semiconductor raises $5.2M

Oso Semiconductor has raised $5.2 million in seed funding. The round was led by Engine Ventures.

OpenAI launches ChatGPT Gov for U.S. government agencies — CNBC

It’s called ChatGPT Gov and was built specifically for U.S. government use; writes Hayden Field. 

DeepSeek’s popular AI app is explicitly sending US data to China — Wired

Users have already reported several examples of DeepSeek censoring content that is critical of China or its policies, writes Matt Burgess and Lily Hay Newman. 

DeepSeek hit with large-scale cyberattack, says it’s limiting registrations — CNBC

DeepSeek on Monday said it would temporarily limit user registrations “due to large-scale malicious attacks” on its services; writes Hayden Field.